
Setting version strings for release and development

builds

BV

[2014-09-15 Mon 11:26]

1 The problem

It is typical and usually desirable to maintain one or more �les in a source

repository that holds a version string that is used when building a source or

binary distribution package. For python packages this is usually the version

argument to setup() in setup.py. For Fermilab CET's UPS-encumbered

CMake system it is the ups/product_deps �le.

This version string is intended to precisely identify the state of the source

code that went into making the distributed package. Knowing it, and know-

ing the invariant procedure for producing the package, should allow someone

to go back and exactly reproduce the distributed package or reproduce its

source for archaeological purposes.

It is, however, typical that any given version string persists for some

period of time and can be found in a number of commits. This is largely

a problem for producing "development" packages but can also exist in the

production of "release" packages. For example, projects that follow the

git flow branching model, by construction, introduce multiple commits on

the release branch that all carry the eventual release version string. This

technical degeneracy is mostly forgivable as it is understood that this ver-

sion string should only apply to the eventual tagged commit on the master

branch.

However, this git flow branching model fails to address what becomes

of this version string after a release branch is merged back to develop. It

also does not address modifying this version string a the point of starting

or �nishing a feature branch. If this omission is carried through to imple-

menting the model one ends up carrying the most recent release version into

a feature branch and persisting it on develop. Any packages built from

these branches will appear to be releases!

1

http://nvie.com/posts/a-successful-git-branching-model/


2 Desired Solution Features

What is wanted is a way to produce a package what clearly but succinctly

identi�es the source code that was used in its production. This method

should work regardless of the state of the source repository. Speci�cally

it needs to support the case where a packages is created from a release,

feature, "hot�x" or maintenance branch (to use git flow terms). It should

also work if a package is produced from any commit on these branches and

ideally indicate if any uncommitted modi�cations existed in the source �les.

3 Git-based solution

The obvious implications of the above is that the version information must

ultimately come from the repository technology as nothing else supplies the

needed level of bookkeeping.

3.1 Using git describe to set the version string

In the case of git part of the needed functionality is provided using:

git describe --dirty

This will return one of three possible values:

<tag> the annotated tag if it exists on the current commit and the working

directory is clean

<tag>-<N>-g<hash> the <tag> is the most recent annotated tag, <N> counts

the number of commits made since that tag and an abbreviation of its

git hash of the current commit, again assuming the working directory

is clean

<tag>-<N>-g<hash>-dirty as above but if any tracked �les have uncom-

mitted changes.

This is a suitable source of information for a version string. In the case of

a release the version is simply <tag>. For any other point in the repository

the version string will gain an simple method to identify and locate the

state from a known release. This identi�cation is made automatically. As

a bonus, if a package is prepared from a "dirty" working directory there is

some indication of this (although, no way to identify what was modi�ed).

2



3.2 Applying a version string

While this source of version information is ideal, applying it necessarily re-

quires some procedure that works outside of the repository. If one runs git

describe, saves the output to a �le under the control of the repository and

commits then that commit is not what the version string claims, while the

commit to which it applied remains holding whatever the version string was

prior. This sets up a chicken-and-egg problem. The only solution is to apply

the version string in some manner not tied to the repository. It is noted that

this problem is universal to any mechanism that stores a version string in a

�le under the control of the repository.

The solution is to incorporate the consumption of this version string into

the package build procedures or, at the very least, into the build procedures

for non-release packages. Generally speaking the build procedure needs to

incorporate these steps:

1. run git describe --dirty

2. modify any �les which carry the version string

3. build a distribution package

4. restore the source directory to it's prior state

A few notes:

� The use of bumpversion may help with step (2), although it is rec-

ommended to that the version string is written generically in all �les,

eg like @VERSION@ and replaced only at this step during package build

time

� If there is no concern for any modi�cations that caused the working

directory to be dirty, (4) can simply be git reset

3

https://github.com/peritus/bumpversion

	The problem
	Desired Solution Features
	Git-based solution
	Using git describe to set the version string
	Applying a version string


